Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 161
Filtrar
1.
Cell Mol Life Sci ; 81(1): 214, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38733529

RESUMO

The non-coding RNAs comprise a large part of human genome lack of capacity in encoding functional proteins. Among various members of non-coding RNAs, the circular RNAs (circRNAs) have been of importance in the pathogenesis of human diseases, especially cancer. The circRNAs have a unique closed loop structure and due to their stability, they are potential diagnostic and prognostic factors in cancer. The increasing evidences have highlighted the role of circRNAs in the modulation of proliferation and metastasis of cancer cells. On the other hand, metastasis has been responsible for up to 90% of cancer-related deaths in patients, requiring more investigation regarding the underlying mechanisms modulating this mechanism. EMT enhances metastasis and invasion of tumor cells, and can trigger resistance to therapy. The cells demonstrate dynamic changes during EMT including transformation from epithelial phenotype into mesenchymal phenotype and increase in N-cadherin and vimentin levels. The process of EMT is reversible and its reprogramming can disrupt the progression of tumor cells. The aim of current review is to understanding the interaction of circRNAs and EMT in human cancers and such interaction is beyond the regulation of cancer metastasis and can affect the response of tumor cells to chemotherapy and radiotherapy. The onco-suppressor circRNAs inhibit EMT, while the tumor-promoting circRNAs mediate EMT for acceleration of carcinogenesis. Moreover, the EMT-inducing transcription factors can be controlled by circRNAs in different human tumors.


Assuntos
Carcinogênese , Resistencia a Medicamentos Antineoplásicos , Transição Epitelial-Mesenquimal , Metástase Neoplásica , Neoplasias , RNA Circular , Humanos , RNA Circular/genética , RNA Circular/metabolismo , Transição Epitelial-Mesenquimal/genética , Neoplasias/genética , Neoplasias/patologia , Neoplasias/metabolismo , Carcinogênese/genética , Carcinogênese/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Plasticidade Celular/genética , Animais , Regulação Neoplásica da Expressão Gênica
2.
Cell Commun Signal ; 22(1): 255, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702718

RESUMO

Cancer's complexity is in part due to the presence of intratumor heterogeneity and the dynamic nature of cancer cell plasticity, which create substantial obstacles in effective cancer management. Variability within a tumor arises from the existence of diverse populations of cancer cells, impacting the progression, spread, and resistance to treatments. At the core of this variability is the concept of cellular plasticity - the intrinsic ability of cancer cells to alter their molecular and cellular identity in reaction to environmental and genetic changes. This adaptability is a cornerstone of cancer's persistence and progression, making it a formidable target for treatments. Emerging studies have emphasized the critical role of such plasticity in fostering tumor diversity, which in turn influences the course of the disease and the effectiveness of therapeutic strategies. The transformative nature of cancer involves a network of signal transduction pathways, notably those that drive the epithelial-to-mesenchymal transition and metabolic remodeling, shaping the evolutionary path of cancer cells. Despite advancements, our understanding of the precise molecular machinations and signaling networks driving these changes is still evolving, underscoring the necessity for further research. This editorial presents a series entitled "Signaling Cancer Cell Plasticity and Intratumor Heterogeneity" in Cell Communication and Signaling, dedicated to unraveling these complex processes and proposing new avenues for therapeutic intervention.


Assuntos
Plasticidade Celular , Neoplasias , Transdução de Sinais , Humanos , Neoplasias/genética , Neoplasias/patologia , Neoplasias/metabolismo , Plasticidade Celular/genética , Animais , Transição Epitelial-Mesenquimal/genética
3.
Nat Commun ; 15(1): 3031, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589411

RESUMO

Hepatoblastomas (HB) display heterogeneous cellular phenotypes that influence the clinical outcome, but the underlying mechanisms are poorly understood. Here, we use a single-cell multiomic strategy to unravel the molecular determinants of this plasticity. We identify a continuum of HB cell states between hepatocytic (scH), liver progenitor (scLP) and mesenchymal (scM) differentiation poles, with an intermediate scH/LP population bordering scLP and scH areas in spatial transcriptomics. Chromatin accessibility landscapes reveal the gene regulatory networks of each differentiation pole, and the sequence of transcription factor activations underlying cell state transitions. Single-cell mapping of somatic alterations reveals the clonal architecture of each tumor, showing that each genetic subclone displays its own range of cellular plasticity across differentiation states. The most scLP subclones, overexpressing stem cell and DNA repair genes, proliferate faster after neo-adjuvant chemotherapy. These results highlight how the interplay of clonal evolution and epigenetic plasticity shapes the potential of HB subclones to respond to chemotherapy.


Assuntos
Hepatoblastoma , Neoplasias Hepáticas , Humanos , Hepatoblastoma/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Plasticidade Celular/genética , Multiômica , Evolução Clonal/genética
4.
Commun Biol ; 7(1): 467, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632473

RESUMO

Differences in shape can be a distinguishing feature between different cell types, but the shape of a cell can also be dynamic. Changes in cell shape are critical when cancer cells escape from the primary tumor and undergo major morphological changes that allow them to squeeze between endothelial cells, enter the vasculature, and metastasize to other areas of the body. A shift from rounded to spindly cellular geometry is a consequence of epithelial-mesenchymal plasticity, which is also associated with changes in gene expression, increased invasiveness, and therapeutic resistance. However, the consequences and functional impacts of cell shape changes and the mechanisms through which they occur are still poorly understood. Here, we demonstrate that altering the morphology of a cell produces a remodeling of calcium influx via the ion channel PIEZO1 and identify PIEZO1 as an inducer of features of epithelial-to-mesenchymal plasticity. Combining automated epifluorescence microscopy and a genetically encoded calcium indicator, we demonstrate that activation of the PIEZO1 force channel with the PIEZO1 agonist, YODA 1, induces features of epithelial-to-mesenchymal plasticity in breast cancer cells. These findings suggest that PIEZO1 is a critical point of convergence between shape-induced changes in cellular signaling and epithelial-mesenchymal plasticity in breast cancer cells.


Assuntos
Neoplasias da Mama , Células Endoteliais , Canais Iônicos , Feminino , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Cálcio/metabolismo , Células Endoteliais/metabolismo , Canais Iônicos/metabolismo , Mecanotransdução Celular/fisiologia , Transição Epitelial-Mesenquimal/genética , Plasticidade Celular/genética
5.
Oncogene ; 43(19): 1411-1430, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38480916

RESUMO

Malignant peripheral nerve sheath tumors (MPNSTs) are chemotherapy resistant sarcomas that are a leading cause of death in neurofibromatosis type 1 (NF1). Although NF1-related MPNSTs derive from neural crest cell origin, they also exhibit intratumoral heterogeneity. TP53 mutations are associated with significantly decreased survival in MPNSTs, however the mechanisms underlying TP53-mediated therapy responses are unclear in the context of NF1-deficiency. We evaluated the role of two commonly altered genes, MET and TP53, in kinome reprograming and cellular differentiation in preclinical MPNST mouse models. We previously showed that MET amplification occurs early in human MPNST progression and that Trp53 loss abrogated MET-addiction resulting in MET inhibitor resistance. Here we demonstrate a novel mechanism of therapy resistance whereby p53 alters MET stability, localization, and downstream signaling leading to kinome reprogramming and lineage plasticity. Trp53 loss also resulted in a shift from RAS/ERK to AKT signaling and enhanced sensitivity to MEK and mTOR inhibition. In response to MET, MEK and mTOR inhibition, we observed broad and heterogeneous activation of key differentiation genes in Trp53-deficient lines suggesting Trp53 loss also impacts lineage plasticity in MPNSTs. These results demonstrate the mechanisms by which p53 loss alters MET dependency and therapy resistance in MPNSTS through kinome reprogramming and phenotypic flexibility.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Neurofibromatose 1 , Inibidores de Proteínas Quinases , Proteína Supressora de Tumor p53 , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Animais , Camundongos , Humanos , Resistencia a Medicamentos Antineoplásicos/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Neurofibromatose 1/genética , Neurofibromatose 1/patologia , Neurofibromina 1/genética , Proteínas Proto-Oncogênicas c-met/genética , Proteínas Proto-Oncogênicas c-met/metabolismo , Neoplasias de Bainha Neural/genética , Neoplasias de Bainha Neural/patologia , Neoplasias de Bainha Neural/tratamento farmacológico , Linhagem Celular Tumoral , Transdução de Sinais , Linhagem da Célula/genética , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/genética , Neurofibrossarcoma/genética , Neurofibrossarcoma/patologia , Neurofibrossarcoma/tratamento farmacológico , Plasticidade Celular/efeitos dos fármacos , Plasticidade Celular/genética
6.
Cancer Metastasis Rev ; 43(1): 197-228, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38329598

RESUMO

Cancer is a complex disease displaying a variety of cell states and phenotypes. This diversity, known as cancer cell plasticity, confers cancer cells the ability to change in response to their environment, leading to increased tumor diversity and drug resistance. This review explores the intricate landscape of cancer cell plasticity, offering a deep dive into the cellular, molecular, and genetic mechanisms that underlie this phenomenon. Cancer cell plasticity is intertwined with processes such as epithelial-mesenchymal transition and the acquisition of stem cell-like features. These processes are pivotal in the development and progression of tumors, contributing to the multifaceted nature of cancer and the challenges associated with its treatment. Despite significant advancements in targeted therapies, cancer cell adaptability and subsequent therapy-induced resistance remain persistent obstacles in achieving consistent, successful cancer treatment outcomes. Our review delves into the array of mechanisms cancer cells exploit to maintain plasticity, including epigenetic modifications, alterations in signaling pathways, and environmental interactions. We discuss strategies to counteract cancer cell plasticity, such as targeting specific cellular pathways and employing combination therapies. These strategies promise to enhance the efficacy of cancer treatments and mitigate therapy resistance. In conclusion, this review offers a holistic, detailed exploration of cancer cell plasticity, aiming to bolster the understanding and approach toward tackling the challenges posed by tumor heterogeneity and drug resistance. As articulated in this review, the delineation of cellular, molecular, and genetic mechanisms underlying tumor heterogeneity and drug resistance seeks to contribute substantially to the progress in cancer therapeutics and the advancement of precision medicine, ultimately enhancing the prospects for effective cancer treatment and patient outcomes.


Assuntos
Plasticidade Celular , Neoplasias , Humanos , Plasticidade Celular/genética , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Transição Epitelial-Mesenquimal/genética , Transdução de Sinais
7.
Genome Med ; 16(1): 36, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409176

RESUMO

Cancer stem cell plasticity refers to the ability of tumour cells to dynamically switch between states-for example, from cancer stem cells to non-cancer stem cell states. Governed by regulatory processes, cells transition through a continuum, with this transition space often referred to as a cell state landscape. Plasticity in cancer cell states leads to divergent biological behaviours, with certain cell states, or state transitions, responsible for tumour progression and therapeutic response. The advent of single-cell assays means these features can now be measured for individual cancer cells and at scale. However, the high dimensionality of this data, complex relationships between genomic features, and a lack of precise knowledge of the genomic profiles defining cancer cell states have opened the door for artificial intelligence methods for depicting cancer cell state landscapes. The contribution of cell state plasticity to cancer phenotypes such as treatment resistance, metastasis, and dormancy has been masked by analysis of 'bulk' genomic data-constituted of the average signal from millions of cells. Single-cell technologies solve this problem by producing a high-dimensional cellular landscape of the tumour ecosystem, quantifying the genomic profiles of individual cells, and creating a more detailed model to investigate cancer plasticity (Genome Res 31:1719, 2021; Semin Cancer Biol 53: 48-58, 2018; Signal Transduct Target Ther 5:1-36, 2020). In conjunction, rapid development in artificial intelligence methods has led to numerous tools that can be employed to study cancer cell plasticity.


Assuntos
Transição Epitelial-Mesenquimal , Neoplasias , Humanos , Inteligência Artificial , Plasticidade Celular/genética , Genômica/métodos , Neoplasias/genética , Neoplasias/patologia
8.
Nat Genet ; 56(1): 74-84, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38066188

RESUMO

Tissues are organized in cellular niches, the composition and interactions of which can be investigated using spatial omics technologies. However, systematic analyses of tissue composition are challenged by the scale and diversity of the data. Here we present CellCharter, an algorithmic framework to identify, characterize, and compare cellular niches in spatially resolved datasets. CellCharter outperformed existing approaches and effectively identified cellular niches across datasets generated using different technologies, and comprising hundreds of samples and millions of cells. In multiple human lung cancer cohorts, CellCharter uncovered a cellular niche composed of tumor-associated neutrophil and cancer cells expressing markers of hypoxia and cell migration. This cancer cell state was spatially segregated from more proliferative tumor cell clusters and was associated with tumor-associated neutrophil infiltration and poor prognosis in independent patient cohorts. Overall, CellCharter enables systematic analyses across data types and technologies to decode the link between spatial tissue architectures and cell plasticity.


Assuntos
Plasticidade Celular , Neoplasias , Humanos , Plasticidade Celular/genética , Neoplasias/genética
9.
Cancer Metastasis Rev ; 43(1): 409-421, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37950087

RESUMO

MYB transcription factors are encoded by a large family of highly conserved genes from plants to vertebrates. There are three members of the MYB gene family in human, namely, MYB, MYBL1, and MYBL2 that encode MYB/c-MYB, MYBL1/A-MYB, and MYBL2/B-MYB, respectively. MYB was the first member to be identified as a cellular homolog of the v-myb oncogene carried by the avian myeloblastosis virus (AMV) causing leukemia in chickens. Under the normal scenario, MYB is predominantly expressed in hematopoietic tissues, colonic crypts, and neural stem cells and plays a role in maintaining the undifferentiated state of the cells. Over the years, aberrant expression of MYB genes has been reported in several malignancies and recent years have witnessed tremendous progress in understanding of their roles in processes associated with cancer development. Here, we review various MYB alterations reported in cancer along with the roles of MYB family proteins in tumor cell plasticity, therapy resistance, and other hallmarks of cancer. We also discuss studies that provide mechanistic insights into the oncogenic functions of MYB transcription factors to identify potential therapeutic vulnerabilities.


Assuntos
Neoplasias , Fatores de Transcrição , Animais , Humanos , Plasticidade Celular/genética , Galinhas , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias/genética , Fatores de Transcrição/genética
10.
Cancer Discov ; 13(8): 1771-1788, 2023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-37470668

RESUMO

Lineage plasticity, a process whereby cells change their phenotype to take on a different molecular and/or histologic identity, is a key driver of cancer progression and therapy resistance. Although underlying genetic changes within the tumor can enhance lineage plasticity, it is predominantly a dynamic process controlled by transcriptional and epigenetic dysregulation. This review explores the transcriptional and epigenetic regulators of lineage plasticity and their interplay with other features of malignancy, such as dysregulated metabolism, the tumor microenvironment, and immune evasion. We also discuss strategies for the detection and treatment of highly plastic tumors. SIGNIFICANCE: Lineage plasticity is a hallmark of cancer and a critical facilitator of other oncogenic features such as metastasis, therapy resistance, dysregulated metabolism, and immune evasion. It is essential that the molecular mechanisms of lineage plasticity are elucidated to enable the development of strategies to effectively target this phenomenon. In this review, we describe key transcriptional and epigenetic regulators of cancer cell plasticity, in the process highlighting therapeutic approaches that may be harnessed for patient benefit.


Assuntos
Plasticidade Celular , Neoplasias , Humanos , Linhagem da Célula/genética , Plasticidade Celular/genética , Neoplasias/genética , Epigênese Genética , Microambiente Tumoral/genética
11.
Nature ; 617(7960): 386-394, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37100912

RESUMO

Inflammation is a complex physiological process triggered in response to harmful stimuli1. It involves cells of the immune system capable of clearing sources of injury and damaged tissues. Excessive inflammation can occur as a result of infection and is a hallmark of several diseases2-4. The molecular bases underlying inflammatory responses are not fully understood. Here we show that the cell surface glycoprotein CD44, which marks the acquisition of distinct cell phenotypes in the context of development, immunity and cancer progression, mediates the uptake of metals including copper. We identify a pool of chemically reactive copper(II) in mitochondria of inflammatory macrophages that catalyses NAD(H) redox cycling by activating hydrogen peroxide. Maintenance of NAD+ enables metabolic and epigenetic programming towards the inflammatory state. Targeting mitochondrial copper(II) with supformin (LCC-12), a rationally designed dimer of metformin, induces a reduction of the NAD(H) pool, leading to metabolic and epigenetic states that oppose macrophage activation. LCC-12 interferes with cell plasticity in other settings and reduces inflammation in mouse models of bacterial and viral infections. Our work highlights the central role of copper as a regulator of cell plasticity and unveils a therapeutic strategy based on metabolic reprogramming and the control of epigenetic cell states.


Assuntos
Plasticidade Celular , Cobre , Inflamação , Transdução de Sinais , Animais , Camundongos , Cobre/metabolismo , Inflamação/tratamento farmacológico , Inflamação/genética , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/patologia , NAD/metabolismo , Transdução de Sinais/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Peróxido de Hidrogênio/metabolismo , Epigênese Genética/efeitos dos fármacos , Metformina/análogos & derivados , Oxirredução , Plasticidade Celular/efeitos dos fármacos , Plasticidade Celular/genética , Ativação de Macrófagos/efeitos dos fármacos , Ativação de Macrófagos/genética
12.
Science ; 379(6632): eaaw3835, 2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36758093

RESUMO

The concept of an epigenetic landscape describing potential cellular fates arising from pluripotent cells, first advanced by Conrad Waddington, has evolved in light of experiments showing nondeterministic outcomes of regulatory processes and mathematical methods for quantifying stochasticity. In this Review, we discuss modern approaches to epigenetic and gene regulation landscapes and the associated ideas of entropy and attractor states, illustrating how their definitions are both more precise and relevant to understanding cancer etiology and the plasticity of cancerous states. We address the interplay between different types of regulatory landscapes and how their changes underlie cancer progression. We also consider the roles of cellular aging and intrinsic and extrinsic stimuli in modulating cellular states and how landscape alterations can be quantitatively mapped onto phenotypic outcomes and thereby used in therapy development.


Assuntos
Plasticidade Celular , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Neoplasias , Humanos , Neoplasias/genética , Neoplasias/patologia , Senescência Celular/genética , Plasticidade Celular/genética , Carcinogênese/genética
13.
Reprod Fertil ; 3(4): C44-C51, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36255031

RESUMO

Ovarian platelet-rich plasma (PRP) is claimed to restore the fertility potential by improving reserve, an effect perhaps mediated epigenetically by platelet-discharged regulatory elements rather than gonadotropin-activated G-protein coupled receptors, as with stimulated in vitro fertilization (IVF). The finding that fresh activated platelet releasate includes factors able to promote developmental signaling networks necessary to enable cell pluripotency tends to support this theory. The mechanistic uncertainty of intraovarian PRP notwithstanding, at least two other major challenges confront this controversial intervention. The first challenge is to clarify how perimenopausal ovarian function is reset to levels consistent with ovulation. Perhaps a less obvious secondary problem is to confine this renewal such that any induced recalibration of cellular plasticity is kept within acceptable physiologic bounds. Thus, any 'drive' to ovarian rejuvenation must incorporate both accelerator and brake. Ovarian aging may be best viewed as a safeguard against pathologic overgrowth, where senescence operates as an evolved tumor-suppression response. While most ovary cells reach the close of their metabolic life span with low risk for hypertrophy, enhanced lysosomal activity and the proinflammatory 'senescence-associated secretory phenotype' usually offsets this advantage over time. But is recovery of ovarian fitness possible, even if only briefly prior to IVF? Alterations in gap junctions, bio-conductive features, and modulation of gene regulatory networks after PRP use in other tissues are discussed here alongside early data reported from reproductive medicine.


Assuntos
Plasticidade Celular , Plasma Rico em Plaquetas , Animais , Plasticidade Celular/genética , Epigenômica
14.
Nat Cell Biol ; 24(9): 1350-1363, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36075976

RESUMO

Coordinated changes of cellular plasticity and identity are critical for pluripotent reprogramming and oncogenic transformation. However, the sequences of events that orchestrate these intermingled modifications have never been comparatively dissected. Here, we deconvolute the cellular trajectories of reprogramming (via Oct4/Sox2/Klf4/c-Myc) and transformation (via Ras/c-Myc) at the single-cell resolution and reveal how the two processes intersect before they bifurcate. This approach led us to identify the transcription factor Bcl11b as a broad-range regulator of cell fate changes, as well as a pertinent marker to capture early cellular intermediates that emerge simultaneously during reprogramming and transformation. Multiomics characterization of these intermediates unveiled a c-Myc/Atoh8/Sfrp1 regulatory axis that constrains reprogramming, transformation and transdifferentiation. Mechanistically, we found that Atoh8 restrains cellular plasticity, independent of cellular identity, by binding a specific enhancer network. This study provides insights into the partitioned control of cellular plasticity and identity for both regenerative and cancer biology.


Assuntos
Reprogramação Celular , Células-Tronco Pluripotentes Induzidas , Plasticidade Celular/genética , Reprogramação Celular/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Fator 3 de Transcrição de Octâmero/genética , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/metabolismo
15.
Cell Death Dis ; 13(9): 832, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36171192

RESUMO

The transcription factor SNAI1 mediates epithelial-mesenchymal transition, fibroblast activation and controls inter-tissue migration. High SNAI1 expression characterizes metastatic triple-negative breast carcinomas, and its knockout by CRISPR/Cas9 uncovered an epithelio-mesenchymal phenotype accompanied by reduced signaling by the cytokine TGFß. The SNAI1 knockout cells exhibited plasticity in differentiation, drifting towards the luminal phenotype, gained stemness potential and could differentiate into acinar mammospheres in 3D culture. Loss of SNAI1 de-repressed the transcription factor FOXA1, a pioneering factor of mammary luminal progenitors. FOXA1 induced a specific gene program, including the androgen receptor (AR). Inhibiting AR via a specific antagonist regenerated the basal phenotype and blocked acinar differentiation. Thus, loss of SNAI1 in the context of triple-negative breast carcinoma cells promotes an intermediary luminal progenitor phenotype that gains differentiation plasticity based on the dual transcriptional action of FOXA1 and AR. This function of SNAI1 provides means to separate cell invasiveness from progenitor cell de-differentiation as independent cellular programs.


Assuntos
Neoplasias da Mama , Neoplasias de Mama Triplo Negativas , Linhagem Celular Tumoral , Plasticidade Celular/genética , Transição Epitelial-Mesenquimal/genética , Feminino , Humanos , Receptores Androgênicos/metabolismo , Fatores de Transcrição da Família Snail/genética , Fator de Crescimento Transformador beta , Neoplasias de Mama Triplo Negativas/genética
16.
Sci Rep ; 12(1): 14395, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35999349

RESUMO

Melanoma cells exhibit phenotypic plasticity that allows transition from a proliferative and differentiated phenotype to a more invasive and undifferentiated or transdifferentiated phenotype often associated with drug resistance. The mechanisms that control melanoma phenotype plasticity and its role in drug resistance are not fully understood. We previously demonstrated that emergence of MAPK inhibitor (MAPKi)-resistance phenotype is associated with decreased expression of stem cell proliferation genes and increased expression of MAPK inactivation genes, including dual specificity phosphatases (DUSPs). Several members of the DUSP family genes, specifically DUSP1, -3, -8 and -9, are expressed in primary and metastatic melanoma cell lines and pre-and post BRAFi treated melanoma cells. Here, we show that knockdown of DUSP1 or DUSP8 or treatment with BCI, a pharmacological inhibitor of DUSP1/6 decrease the survival of MAPKi-resistant cells and sensitizes them to BRAFi and MEKi. Pharmacological inhibition of DUSP1/6 upregulated nestin, a neural crest stem cell marker, in both MAPKi-sensitive cells and cells with acquired MAPKi-resistance. In contrast, treatment with BCI resulted in upregulation of MAP2, a neuronal differentiation marker, only in MAPKi-sensitive cells but caused downregulation of both MAP2 and GFAP, a glial marker, in all MAPKi-resistant cell lines. These data suggest that DUSP proteins are involved in the regulation of cellular plasticity cells and melanoma drug resistance and are potential targets for treatment of MAPKi-resistant melanoma.


Assuntos
Plasticidade Celular , Melanoma , Linhagem Celular Tumoral , Plasticidade Celular/genética , Resistencia a Medicamentos Antineoplásicos/genética , Fosfatases de Especificidade Dupla/genética , Humanos , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/patologia , Inibidores de Proteínas Quinases/farmacologia
17.
Curr Opin Genet Dev ; 75: 101948, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35809361

RESUMO

Recent studies using cell lineage-tracing techniques, organoids, and single-cell RNA sequencing analyses have revealed: 1) adult organs use cell plasticity programs to recruit progenitor cells to regenerate tissues after injury, and 2) plasticity is far more common than previously thought, even in homeostasis. Here, we focus on the complex interplay of normal stem cell differentiation and plasticity in homeostasis and after injury, using the gastric epithelium as a touchstone. We also examine common features of regenerative programs and discuss the evolutionarily conserved, stepwise process of paligenosis which reprograms mature cells into progenitors that can repair damaged tissue. Finally, we discuss how conserved plasticity programs may help us better understand pathological processes like metaplasia.


Assuntos
Plasticidade Celular , Estômago , Diferenciação Celular/genética , Linhagem da Célula/genética , Plasticidade Celular/genética , Células-Tronco , Estômago/patologia
18.
Cell Mol Gastroenterol Hepatol ; 14(5): 1025-1051, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35835391

RESUMO

BACKGROUND & AIMS: Efforts to characterize the signaling mechanisms that underlie gastroenteropancreatic neoplasms (GEP-NENs) are precluded by a lack of comprehensive models that recapitulate pathogenesis. Investigation into a potential cell-of-origin for gastrin-secreting NENs revealed a non-cell autonomous role for loss of menin in neuroendocrine cell specification, resulting in an induction of gastrin in enteric glia. Here, we investigated the hypothesis that cell autonomous Men1 inactivation in glial fibrillary acidic protein (GFAP)-expressing cells induced neuroendocrine differentiation and tumorigenesis. METHODS: Transgenic GFAPΔMen1 mice were generated by conditional GFAP-directed Men1 deletion in GFAP-expressing cells. Cre specificity was confirmed using a tdTomato reporter. GFAPΔMen1 mice were evaluated for GEP-NEN development and neuroendocrine cell hyperplasia. Small interfering RNA-mediated Men1 silencing in a rat enteric glial cell line was performed in parallel. RESULTS: GFAPΔMen1 mice developed pancreatic NENs, in addition to pituitary prolactinomas that phenocopied the human MEN1 syndrome. GFAPΔMen1 mice exhibited gastric neuroendocrine hyperplasia that coincided with a significant loss of GFAP expression. Men1 deletion induced loss of glial-restricted progenitor lineage markers and an increase in neuroendocrine genes, suggesting a reprogramming of GFAP+ cells. Deleting Kif3a, a mediator of Hedgehog signaling, in GFAP-expressing cells attenuated neuroendocrine hyperplasia by restricting the neuroendocrine cell fate. Similar results in the pancreas were observed when Sox10 was used to delete Men1. CONCLUSIONS: GFAP-directed Men1 inactivation exploits glial cell plasticity in favor of neuroendocrine differentiation.


Assuntos
Plasticidade Celular , Neuroglia , Animais , Camundongos , Carcinogênese/genética , Carcinogênese/metabolismo , Carcinogênese/patologia , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Plasticidade Celular/genética , Plasticidade Celular/fisiologia , Gastrinas , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Proteínas Hedgehog , Hiperplasia/patologia , Neoplasia Endócrina Múltipla Tipo 1/genética , Neoplasia Endócrina Múltipla Tipo 1/metabolismo , Neoplasia Endócrina Múltipla Tipo 1/patologia , Células Neuroendócrinas/metabolismo , Células Neuroendócrinas/patologia , Células Neuroendócrinas/fisiologia , Neuroglia/metabolismo , Proteínas Proto-Oncogênicas , RNA Interferente Pequeno
19.
Sci China Life Sci ; 65(8): 1481-1497, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35696016

RESUMO

The CREB1 gene encodes an exceptionally pleiotropic transcription factor that frequently dysregulated in human cancers. CREB1 can regulate tumor cell status of proliferation and/or migration; however, the molecular basis for this switch involvement in cell plasticity has not fully been understood yet. Here, we first show that knocking out CREB1 triggers a remarkable effect of epithelial-mesenchymal transition (EMT) and leads to the occurrence of inhibited proliferation and enhanced motility in HCT116 colorectal cancer cells. By monitoring 45 cellular signaling pathway activities, we find that multiple growth-related pathways decline significantly while inflammatory pathways including NF-κB are largely upregulated in comparing between the CREB1 wild-type and knocked out cells. Mechanistically, cells with CREB1 knocked out show downregulation of MYC as a result of impaired CREB1-dependent transcription of the oncogenic lncRNA CCAT1. Interestingly, the unbalanced competition between the coactivator CBP/p300 for CREB1 and p65 leads to the activation of the NF-κB pathway in cells with CREB1 disrupted, which induces an obvious EMT phenotype of the cancer cells. Taken together, these studies identify previously unknown mechanisms of CREB1 in CRC cell plasticity via regulating lncRNA CCAT1 and NF-κB pathways, providing a critical insight into a combined strategy for CREB1-targeted tumor therapies.


Assuntos
Plasticidade Celular , Neoplasias Colorretais , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , NF-kappa B , RNA Longo não Codificante , Linhagem Celular Tumoral , Movimento Celular/genética , Plasticidade Celular/genética , Plasticidade Celular/fisiologia , Proliferação de Células/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/fisiopatologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Transição Epitelial-Mesenquimal/genética , Transição Epitelial-Mesenquimal/fisiologia , Regulação Neoplásica da Expressão Gênica , Humanos , NF-kappa B/genética , NF-kappa B/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
20.
Curr Opin Genet Dev ; 75: 101928, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35749971

RESUMO

In vertebrates, neural crest cells (NCCs) are a multipotent embryonic population generating both neural/neuronal and mesenchymal derivatives, and thus the neural crest (NC) is often referred to as the fourth germ layer. NC development is a dynamic process, where NCCs possess substantial plasticity in transcriptional and epigenomic profiles. Recent technical advances in single-cell and low-input sequencing have empowered fine-resolution characterisation of NC development. In this review, we summarise the latest models underlying NC-plasticity acquirement and cell-fate restriction, outline the connections between NC plasticity and NC-derived cancer and envision the new opportunities in studying NC plasticity and its link to cancer.


Assuntos
Neoplasias , Crista Neural , Animais , Diferenciação Celular/genética , Plasticidade Celular/genética , Humanos , Neoplasias/genética , Crista Neural/fisiologia , Neurogênese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA